
OMA standalone

CBRG, ETHZ

Contents

1 Introduction 2

2 Downloads 3

3 Installation 3
3.1 Homebrew/Linuxbrew . 3

4 Usage 3
4.1 Command-line options . 4
4.2 Required Resources . 5
4.3 Parallelization . 5

4.3.1 Parallelization with LSF, PBS Pro, Slurm, or SunGridEngine 5
4.3.2 LSF . 6
4.3.3 Sun Grid Engine (aka Oracle Grid Engine) . 6
4.3.4 PBS Pro . 6
4.3.5 Slurm . 6

4.4 Adding/Updating new genomes . 6
4.5 Exporting precomputed all-against-all . 6
4.6 Advanced usages of OMA standalone . 7

4.6.1 Specifying the maximum amount of computing time . 7

5 Utility tools 7
5.1 oma-cleanup . 7
5.2 oma-status . 7
5.3 oma-compact . 7

6 Applications for OMA standalone 7
6.1 Species tree reconstruction . 8
6.2 Predict gene functions of a new genome . 8
6.3 Dynamics of Genome Evolution . 8
6.4 Phylogenetic Profiling . 8

7 File Formats 8
7.1 Input Files . 8
7.2 OMA Output Files . 9

8 Parameters 10

9 ESPRIT 12
9.1 Esprit Parameters . 12
9.2 ESPRIT Output . 12

10 Getting help 12

11 License 13

1

Figure 1: Conceptual overview of the OMA standalone software. Dotted arrows indicate alternative steps (reference
species tree either specified as input or inferred from the data).

1 Introduction

The OMA (Orthologous MAtrix) database is a well-established resource for identifying orthologs among publicly
available complete genomes. Orthologs are genes that are related through speciation events, and are essential for
many analyses, including gene function prediction and species tree reconstruction.
OMA standalone is a standalone package that can infer orthologs using the OMA algorithm on custom genomes. It
is also possible to export genomes and their homology relations directly from the OMA web-browser and combine
them with custom genomes or proteomes.
OMA standalone computes pairwise orthologs and constructs from those two different types of groupings, the OMA
Groups and Hierarchical Orthologous Groups (HOGs). Furthermore, OMA standalone can predict gene function
annotations using Gene Ontology terms based on existing annotations from exported genomes, and produces phyletic
profiles for OMA Groups and HOGs. See section Possible applications6 for some further explanations how to use the
output of OMA standalone.
Figure 11 provides an overview of the OMA standalone pipeline together with user input and output files that are
produced by OMA standalone.
You can run OMA as a standalone program on your own computer or HPC cluster. Included are the algorithms for
OMA itself plus ESPRIT - a tool based on OMA to detect split genes. The software can be run on Linux (x86, both

2

64bit and 32bit) and MacOSX (x86, 64bit).
For a short summary and pointers to detailed algorithmic publications of OMA, please refer to the OMA browser
page:
https://omabrowser.org/oma/about/
For background info on ESPRIT, please refer to this article:
http://dx.doi.org/10.1093/bib/bbr038
If you have specific questions about the installation or the usage of OMA, please contact adrian.altenhoff at inf.ethz.ch
or christophe.dessimoz at unil.ch.

2 Downloads

The current version of OMA standalone can be found here:
OMA.2.3.1.tgz
See the release notes to get an overview of recent function improvements and bug fixes.
Previous releases of OMA standalone are still available for download.

3 Installation

You do not need to install OMA standalone on your system; the script will also run if you just call it by using the
complete path to bin/oma in the installer folder. But we still encourage you to run the installer script, since it makes
working with OMA considerably more convenient.
To install OMA standalone on your system, download the installer, untar the package and run the included installer
script:

wget -O oma.tgz https://omabrowser.org/standalone/OMA.2.3.1.tgz

on MacOS you can also use curl:

curl https://omabrowser.org/standalone/OMA.2.3.1.tgz -o oma.tgz

tar xvzf oma.tgz

cd OMA.2.3.1

./install.sh /your/install/prefix

If you do not choose an install prefix, OMA will be installed in /usr/local/OMA (for this, you might need to install
it using the root account or sudo).
After installation, make sure the bin folder of OMA is in your PATH variable, e.g., if you are using bash and used
/your/install/prefix as installer prefix, add a line in /.bash profile such as:

export PATH=$PATH:/your/install/prefix/OMA/bin

For other shells, choose the appropriate syntax. Of course you can also just use absolute paths to run OMA standalone.

3.1 Homebrew/Linuxbrew

Alternatively, OMA standalone is also available on Homebrew and Linuxbrew. To install OMA standalone with
Homebrew or Linuxbrew make sure you have installed the respective package and then run

brew tap brewsci/bio

brew install oma

4 Usage

First, set up a working directory. Copy the file parameters.drw into this folder (if you installed OmaStandalone,
you can alternatively run OMA -p to get the parameter file with default values) and change it to your needs. Create a
directory DB in your working directory that holds the genome data in FASTA format (see ”File formats7”) and copy
your data into this directory. If you want to use ESPRIT, the FASTA file containing the contigs should be called
{YourGenome}.contig.fa. Then, simply call OMA from your working directory to run OMA or ESPRIT
If you have not installed OMA yet, use the complete path to bin/oma in the installer folder to start the script.
As an example, assume you installed OMA in /your/install/prefix and want to use ESPRIT on two genome files
and one file with contigs (all in /home/you/fasta, do something like this:

3

https://omabrowser.org/oma/about/
http://dx.doi.org/10.1093/bib/bbr038
https://omabrowser.org/standalone/OMA.2.3.1.tgz
release_notes.txt
previous_releases.html

create working directory

mkdir myWorkingDir

cd myWorkingDir

create DB directory in working directory

mkdir DB

copy FASTA files into DB directory

cp /home/you/fasta/yourFirstGenomeFile.fa DB/

cp /home/you/fasta/yourSecondGenomeFile.fa DB/

cp /home/you/fasta/yourContigFile.contig.fa DB/

cp /your/install/prefix/OMA/OMA.2.3.1/parameters.drw ./

adjust parameters

vim parameters.drw

run OMA

OMA

To get a first impression of OMA you could cd into the ToyExample directory, have a look at parameters.drw and
run OMA to process our example files.

4.1 Command-line options

OMA standalone has a few commandline options you can set. The available options together with a brief description
is available using the ”-h” option, i.e. OMA -h

OMA -h

bin/oma - runs OMA standalone

bin/oma [options] [paramfile]

Runs the standalone version of the Orthologous MAtrix (OMA) pipeline

to infer orthologs among complete genomes. A highlevel description

of its algorithm is available here: http://omabrowser.org/oma/about

The all-against-all Smith-Waterman alignment step of OMA requires

a lot of CPU time. OMA standalone can therefore be run in parallel.

If you intend to use OMA standalone on a HPC cluster with a scheduler

such as LSF, PBS Pro, Slurm or SunGridEngine, you should use the

jobarray option of those systems,

e.g. bsub -J "oma[1-500]" bin/oma (on LSF).

qsub -t 1-500 bin/oma (on SunGridEngine)

In case you run OMA on a single computer with several cores, use

the -n option.

Options:

-n <number> number of parallel jobs to be started on this computer

-v version

-d <level> increase debug info to <level>. By default level is set to 1.

-i interactive session, do not quit in case of error and at the end

of the run.

-s stop after the AllAll phase. This is the part which is parallelized.

The option can be useful on big datasets that require lot of

memory for the later phases of OMA. It allows to stop after the

parallelized step and restart again a single process with more

memory.

-c stop after database conversion. This option is useful if you

work with a large dataset and/or the filesystem you use is

slow.

-W <secs> maximum amount of Wall-clock time (in secs) that the job should

run before terminating in a clean way. This option has only an

effect in the all-against-all phase. If the job terminates

because it reaches the time limit, it quits with the exit

code 99.

-p copy the default parameter file to the current directory. This

4

is useful if want to analyse a new dataset and previously

installed OmaStandalone.

-h/? this help

paramfile path to the parameter file. it defaults to ./parameters.drw

EXIT

0 normal exit

1 a general error (i.e. configuration problem) occured

99 reached timelimit (provided with -W flag)

4.2 Required Resources

Depending on the dataset to be analysed, OMA can require quite a significant amount of computational resources,
i.e. RAM and cpu time. Most computing time is spent to compute the all-against-all sequence alignments, which
is why this part has been parallelized. Although cpu intensive this phase does not require too much memory. As a
rule of thumb you can assume it requires roughly 10 times the size of your DB folder, but at minimum 650MB. The
second part of OMA runs sequential on a single core, but it requires a lot more memory: Asymptotically it grows
quadratic in the number of genomes. From a few real data runs we estimated that as a rule of thumb, you should
count with 400MB * pow(nr genomes, 1.4). Obviously this depends also a lot on the size of your genomes. 60
metazoas have been successfully computed using 120GB, and for the same number of bacterial genomes, 50GB were
reported to be enough.
Because of this imbalance regarding the required memory the OMA starter script has command line option -s to run
only the first part of the OMA pipeline. Using this option, the computation can be split into a parallel phase with
little memory requirement , and a single process requiring a lot more RAM. Running the OMA thus becomes a two
stage process like this:

first stage, little memory:

OMA -s

once first stage terminated, run second stage

OMA

Note that this staging is mostly useful on computing clusters where often memory and cpu time has to be reserved
at job submission.

4.3 Parallelization

The all-against-all phase of OMA is the most time-consuming one, but it can be parallelized (unlike all other steps,
which cannot run in parallel). The way it works is that the parameter ”AlignBatchSize” and the total number of
genomes (n) will determine into how many chunks the all-against-all phase is divided. AlignBatchSize will split the
n*(n-1)/2 genome pairs further into chunks of at most ”AlignBatchSize” alignments. The larger AlignBatchSize
is, the fewer (and hence longer) jobs will be executed.
Scheduling is straightforward: all compute processes need to start from the same directory, and each one will try to
do an equal amount of chunks sequentially. However, before starting a new chunk, each process ensures that it has
not yet already been processed by another process (i.e. no result file yet exists).
On a single computer with multiple processors and/or cores, it is recomended to start ”N” parallel processes with
the ”-n” option, i.e.

OMA -n 5

will start 5 parallel jobs. Note that on HPC with schedulers there is a better way described below4.3.1
Therefore, there is not need to specify which parts are to be done by which process. One should only ensure that all
processes start from a shared directory, such that each chunk gets computed by a single process only.

4.3.1 Parallelization with LSF, PBS Pro, Slurm, or SunGridEngine

With a scheduler such as LSF, SGE or Slurm, running parallel jobs is particularly easy, as the parallel jobs can be
start using as a job array. OMA will automatically spread the work for the all-against-all among all processes. For a
brief discussion on the required resources refer to the section below4.2 Do not start OMA with the -n option for that.
Instead, use a job array with one of the supported schedulers below (the example is to start 100 jobs in parallel).

5

New in 2.0: The user should now explicitly set the number of total processes that should run in the job array. This
is done by setting the environment variable ’NR PROCESSES’. E.g. in bash/tcsh use

export NR_PROCESSES=100 # bash

setenv NR_PROCESSES 100 # tcsh

prior to submitting the job. The main advantage of this new form is that single jobs can be more easily resubmitted,
and very large job arrays that do not all run simultaneously will work more reliably.

4.3.2 LSF

export NR_PROCESSES=100

bsub -J "OMA[1-$NR_PROCESSES]" -o "out.%I" "OMA"

4.3.3 Sun Grid Engine (aka Oracle Grid Engine)

export NR_PROCESSES=100

qsub -t 1-$NR_PROCESSES "OMA"

4.3.4 PBS Pro

Prepare a job script called e.g. job.sh:

#!/bin/bash

set the number of nodes and processes per node

#PBS -l select=1:ncpus=1:mem=1000mb

set max wallclock time

#PBS -l walltime=01:00:00

#PBS -J 1-100

export NR_PROCESSES=100

OMA

The script can then be submitted as follows:

qsub job.sh

4.3.5 Slurm

sbatch --array=1-100 -N1 <<EOF

#!/bin/sh

export NR_PROCESSES=100

/absolute/path/to/bin/OMA

EOF

4.4 Adding/Updating new genomes

It is possible to add new genomes without recomputing the all-against-all phase for pre-existing genomes. To do
so, simply add the new fasta databases in the DB/ directory and re-run OMA. Likewise, it is possible to update a
genome by deleting the old genome from the DB/ directory, and adding a new file. Important: to avoid clashes
with previously computed results, the updated genome must use a different filename than any previously computed
result.

4.5 Exporting precomputed all-against-all

Additionally it is possible to export the precomputed all-against-all for any of the >2000 genomes currently in
the oma database. This can result in a massive speedup of time to run omastandalone. To export genomes, go to
https://omabrowser.org/export and select the genomes you wish to include in your omastandalone run. The resulting
compressed tar file but be uncompressed in the root directory of your analysis. Then simply run omastandalone as
normal.

6

https://omabrowser.org/export

4.6 Advanced usages of OMA standalone

In this section we collect a few ideas to push the limits of OMA standalone.

4.6.1 Specifying the maximum amount of computing time

Often it is desirable to have many short jobs than a few long running ones, especially in a HPC environment. There,
usually each job is limited to a certain amount of time, where short jobs usually get a higher priority assigned. With
the -W command line option, one can inform OMA of the maximum amount of time (in seconds) it should use before
exiting in a clean way. Once this time limit is reached, OMA terminates with an exit value of 99, which can be
used on many schedulers to re-queue the job automatically. On LSF, you can use for example -Q ”99”, SGE (if not
deactivated by the cluster configurations) will reschedule jobs automatically. The exit code has changed in release
2.3 in order to support the SGE platform more easily.
Sensible values for -W are usually between 3600 (1 hour) or higher. Note that this flag does not replace any resource
allocation option from the scheduler.

5 Utility tools

OMA standalone ships with a few additional utility tools to simplify working with OMA. We briefly introduce them
here. All tools are shell script located in OMA’s bin directory. All tools provide some additional help information
with the command line option -h

5.1 oma-cleanup

In case a few processes to compute the all-vs-all get prematurly terminated or killed for whatever reason, they usually
leave back lock files that need to be removed.

oma-cleanup

is a simple shell script that removes all of the lock files. Before using this tool, make sure that no OMA process is
still running.

5.2 oma-status

The parallel all-vs-all phase of OMA standalone can take quite a lot of time to compute and for the process themselves
it is rather difficult to estimate how far the overall progress advanced already. We therefore provide a tool that reports
the overall progress of the all-vs-all phase with the following command:

oma-status

Note also the command line options of the tool that can give you extended reporting, parallel calculations, etc. You
can run oma-status also while computations are still ongoing.

5.3 oma-compact

The all-vs-all phase can produce a huge amount of files, specially for big genomes. On many HPC clusters users
have restrictions on the number of files that can be stored. oma-compact is a utility tool that will compact the
Cache/AllAll directory of finished genome pairs to just a single file per pair:

oma-compact

The tool can be started repeatetly and also during ongoing computations.

6 Applications for OMA standalone

In this section we provide a few hints on best practices on how to use OMA standalone results in possible applications.

7

6.1 Species tree reconstruction

The most common approach to reconstruct a species phylogeny is to build a supermatrix from many marker loci. For
this it is of outmost importance to avoid paralogous relations within each loci. OMA Groups (or simply Orthologous
Groups) is the most suitable type of output. Each group forms a maximum clique in the graph of pairwise orthologs.
OMA standalone builds a directory called OrthologousGroupsFasta, that contains for each group a fasta formatted
file with their unaligned sequences.
A standard approach would therefore be to build a MSA for each of the marker gene groups, concatenate them and
infer an tree from the superalignment.

6.2 Predict gene functions of a new genome

OMA can be used to annotate the function of proteins from a new genome / proteome using existing gene ontology
annotations from other species in OMA. OMA propagates annotations based on shared OMA group membership
- the details are explained in this paper. For this to work, you need to export a few relevant and well annotated
genomes from the OMA Browser. By adding your own proteome to the dataset, and running OMA standalone, your
output directory will eventually contain a gaf formatted annotations file named gene function.gaf.
As not all annotation terms make sense in all domains of life, the parameter CladeDefinition can be used to limit
the propagation to the certain parts of the tree of life.

6.3 Dynamics of Genome Evolution

The Hierarchical Orthologous Groups (HOGs) of OMA capture the dynamics of genome evolution, i.e. the joint
evolutionary events acting on the set of species under consideration. The model of OMA tries to explain the
evolutionary history using speciations, duplications and losses. HOGs are groups of genes that descended from a
single ancestral gene at a specific taxonomic level. OMA standalone will computed these nested groups and store
them in the community standard OrthoXML format. The output file is called HierarchicalGroups.orthoxml.
The root-level grouping provides something similar as a homologous group. As this specific grouping can be useful
in itself, OMA standalone produces for each root-level HOG a fasta file in a subdirectory named HOGFasta.
For more complicated analyses of the evolutionary dynamics, extracting groups at specific taxonomic levels, creating
a phylostratetic analysis and many more things, we developed the special purpose tool pyHAM to work with orthoxml
files.

6.4 Phylogenetic Profiling

Orthology is also used to build phylogenetic profilingpatterns of presence and absence of genes across species. OMA
standalone produces two forms of output: a binary matrix with species as rows and OMA groups as columns,
indicating patterns of presence or absence of genes in each group; a count matrix with species as columns and HOGs
as rows, indicating the number of genes in each HOG. Phylogenetic profiling tools can help to identify from this
information proteins that are involved in the same biological pathway.

7 File Formats

7.1 Input Files

OMA uses two different input formats: FASTA files for genome input and a Darwin file for parameter input.
The Fasta format is explained in detail on wikipedia.
As almost everywhere else, OMA uses the greater-than symbol ”>” to distinguish labels from sequences. Each
sequence in a genome is supposed to have its own label. Have a look at the FASTA files included in ToyExample/DB
in our installer package for some example files. The fasta genome files need to have a ”.fa” extension to be
recognised as such.
In case your genomes contain multiple alternative splicing variants, you can add a text-based file per genome called
DB/{YourGenome}.splice that put together the different splicing variants, e.g. to indicate that the three splicing
variants ENSP00000384207, ENSP00000263741 and ENSP00000353094 are encoded by the same gene, add the
following line to the splice file:

ENSP00000384207; ENSP00000263741; ENSP00000353094

OMA requires that the individual IDs are unique prefixes of your FASTA headers.
Poor quality genomes often suffer from truncated gene models. If you name the FASTA files of poor quality genomes
{YourGenome}.contig.fa, they are treated specially: OMA will ignore the LengthTol8condition, such that orthol-
ogy will also be established for none-full-length homologous pairs, i.e. the condition that the fraction of the length

8

http://dx.doi.org/10.1093/nar/gku1158
http://www.orthoxml.org/
https://github.com/DessimozLab/pyham
http://en.wikipedia.org/wiki/FASTA_format

of the effective pairwise alignment divided by the length of the shorter sequences must be at least LengthTol is
ignored. For ESPRIT, genomes labeled with the .contig.fa extension are considered for searching for split genes.
Parameter files use Darwin syntax. Key-value-pairs are written as

key := value;

Note the colon in := and the semicolon at the end of the line. If your parameter file does not use valid Darwin
syntax, OMA will print out a short message and stop its execution.

7.2 OMA Output Files

The output of OMA gets written to files stored in a directory Output in your working directory. This can be changed
by changing the OutputFolder parameter, There are text files and directories organized as described in Table 1. If
not all output files are needed, note that the production of some of them can be disabled (see Table 4 below).

Filename or Directory Contents
Map-SeqNum-ID.txt Lists all genes of all datasets with their unique sequence number and

the labels read from the FASTA files.
OrthologousGroups.txt The groups of orthologs are given as one per row, starting with a

unique group identifier, followed by all group members, all separated
by tabs.

OrthologousMatrix.txt More compact version of OrthologousGroups.txt. The groups of
orthologs are given as matrix with group per row and one genome
per tab-separated column. Numbers refer to entry number as listed
in the file Map-SeqNum-ID.txt.

OrthologousGroups.orthoxml The OMA groups of orthologs stored in orthoxml format.
OrthologousGroupsFasta/ Each OMA group is provided as a separate Fasta file, with the species

name as identifer. This format is particularly suitable as starting point
for a phylogenetic reconstruction.

PairwiseOrthologs/ The textfiles in Output/PairwiseOrthologs are named according
to {genome a}-{genome b}.txt and consist of a list of pairwise
orthologs for the two given genomes. Every pair is listed only once,
and in no particular order. Each line in the file contains one pair; all
fields are separated by tabs. In the first two field, the unique IDs of
the proteins are given. The next two fields contain the labels of the
proteins, and in the last two fields, the type of orthology and (if any)
the OMA group is given.

OrthologousPairs.orthoxml The pairwise orthologs stored in orthoxml format. Each group in the
file will have orthologs between genes from only two genomes.

HierarchicalGroups.orthoxml The hierarchical groups of orthologs in OrthoXML format. A detailed
description of how these groups are computed is forthcoming.

EstimatedSpeciesTree.nwk The inferred species tree on which the hierarchical groups inference
procedure is based, in Newick format. The species tree is estimated
from the 1% most complete OMA Groups using a weighted least
squares distance tree inference approach with mid-point rooting.

EstimatedSpeciesTree.phyloxml The infered species tree in phyloxml format, otherwise identical to
EstimatedSpeciesTree.nwk

HOGFasta/ For each root HOG group we provide a separate Fasta file with all the
protein sequences clustered in it. This format is particularly suitable
as a starting point for a phylogenetic reconstruction of a gene tree,
as root HOGs represent gene families which originated the common
ancestor of all the species in that particular HOG.

used splicing variants.txt If UseOnlyOneSplicingVariantis activated and splicing informa-
tion is available, the variant which has been used for calling the or-
thologous relations is stored in this file. The format is a tab-delimited
text file with the species in the first column and the id of the used
splicing variant in the second column.

gene function.gaf The predicted Gene Ontology function assignments as a gaf formatted
file. The file is only created if DoGroupFunctionPrediction is set
to true in the parameter file and at least some exported genomes
with GO annotations are included in the analysis.

9

http://orthoxml.org
http://orthoxml.org

PhyleticProfileOMAGroups.txt The phyletic profiles are given as one OMA Group per row, starting
with a group identifier, followed by a presents/absents indicator (i.e.
0: absent, 1: present) per species in the group as columns. The
first row contains the species for each column. The columns are all
tab-delimted.

PhyleticProfileHOGs.txt The phyletic profiles are given as one HOG per row. Only the root
level of each HOG is used. Every row starts with a group identifier,
followed by the number of entries per species in the group as columns.
The first row contains the species labels in each column. The columns
are all tab-delimited.

Table 1: Contents of the OMA output files

8 Parameters

All parameters for OMA and ESPRIT are set in a parameters file. There is an example file in the OMA installer
package; we encourage you to copy this file into your working directory and change it to your needs, or use the
command OMA -p to create a default parameters file.
The parameter file consists of three main parts: First, general parameters for OMA are set. Table 3 describes these
parameters in detail.
Next, there are a few optional parameters, listed in Table 4, to avoid producing particular output files. Indeed, in
large analyses, disabling the generation of unused output might save a substantial amount of computing time and
might drastically reduce the number of produced files.
The third part are the parameters which are unique to ESPRIT. Check the ESPRIT section9 for details on them.

Parameter Meaning Default
InputDataType Type of input sequences. This can be set either to ’AA’ for

amino acid sequences or ’DNA’ for nucleotide sequences
AA

OutputFolder Folder to which the output is written. At each run, the content
of this folder will be overwritten. Don’t store any important
files in it. The OutputFoldermust not contain any spaces.

Output

ReuseCachedResults If you want to recompute everything from scratch every time
the script is run, set this to false.

true

AlignBatchSize In the all-against-all phase, each genome pair is split in smaller
chunks of AlignBatchSizeprotein comparisons. The larger
this number, the longer each unit runs, and the fewer files get
produced. This allows to adjust the frequency of milestone
steps (e.g. in case of computer crash) or to process few but
large genomes with many CPUs efficiently.

1000000

MinScore Alignments which have a score lower than MinScore will not
be considered. The scores are in Gonnet PAM matrices units.

181

LengthTol Length tolerance ratio. If the length of the effective alignment
is less than LengthTol * min(length(s1), length(s2)), then
the alignment is not considered.

0.61

StablePairTol During the stable pair formation, if a pair has a distance prov-
able higher than another pair (i.e. StablePairTol standard
deviations away) then it is discarded.

1.81

VerifiedPairTol Tolerance parameter for the detection of differential gene
losses using a third genome. The larger the tolerance, the lib-
eraler the algorithm assigns orthologous relations. A detailed
description is provided here.

1.53

MinSeqLen Any sequence which is less than MinSeqLen amino acids long
in regular genomes is not considered.

50

UseOnlyOneSplicingVariant Enables/disables the filtering on a single representative splic-
ing variant. If enabled, OMA selects the variant that has the
most homologous matches with all other genomes. Orthol-
ogy inference is then only based on this variant. If disabled,
alternative splicing variants will usually be inferred as paralogs.

true

10

http://nar.oxfordjournals.org/content/34/11/3309.full

StableIdsForGroups Enables/disables the generation of stable identifiers for OMA
groups (and Hierarchical Groups if the top-down algorithm is
selected). The identifier consists of a prefix to determine the
type of the group (’OMA’ or ’HOG’), and a subsequence of
the amino acid sequence uniquely present in this group. The
computation of these ids might require a substantial amount
of time. The ids are stored in the OrthoXML files only.

false

GuessIdType Enable/disable guessing of the id types while generating the
orthoxml file. In this context we refer to ID type guessing as
the task to guessing whether an ID should be stored in the
geneId, protId or transcriptId tag. If the flag is set to false,
the whole fasta header is used and stored as is in the protId
tag.

false

DoHierarchicalGroups Enables/disables and selects the algorithm to compute the hi-
erarchical orthologous groups (HOGs). Valid parameters are
false, ’top-down’ and ’bottom-up’. The top-down ap-
proach was the only algorithm until OMA standalone 2.0. The
bottom-up approach is as of now still an experimental feature,
but will become the default choice in the future.

’top-down’

MaxTimePerLevel Define maximum amount of time (in sec) spent by the pro-
gram for breaking every connected component of the orthology
graph at its weakest link on a given taxonomic level. If set to a
negative value, no time limit is enforced. Once the time limit
is reached, OMA will treat the remaining connected compo-
nent at the lower level (groups won’t span over the deeper
node).

1200

SpeciesTree The hierarchical groups require a (partially) resolved species
phylogeny. With the parameter SpeciesTree the user can
specify a phylogeny in Newick-format, or, by setting the vari-
able to ”estimate”, compute a species tree based on the OMA
Groups and use this one.

estimate

ReachabilityCutoff The cutoff of ”average reachability within two steps”
defines up to what point a cluster is split into sub-
clusters. Details on this parameter are explained in
http://doi.org/10.1371/journal.pone.0053786. This parame-
ter applies only to the top-down HOG inference approach.
See parameter DoHierarchicalGroups for additional infor-
mation.

0.65

MinEdgeCompletenessFraction The cutoff in GETHOGs bottom-up algorithm to make an edge
trusted in the orthology graph among HOGs. This parame-
ter applies only to the bottom-up approach. See parameter
DoHierarchicalGroups for additional information.

0.80

DoGroupFunctionPrediction Compute Gene Ontology function predictions based on the
OMA Groups assignments. The predictions are then stored in
a gaf file. Computing these predictions can take a substantial
amount of time. Note: Predictions are based on transferring
existing annotations from genomes. Only genomes exported
through the OMA Browser export interface have usable input
annotations.

true

GroupFunctionCutoff Parameter to specify the fraction of genes in a group that need
to be annotated with a GO term in order to propagate the an-
notation to the unannotated group members. The parameter
ensures that predictions are not propagated too liberally. Note
that it requires at least the specified fraction of genomes to
be exported from the OMA Browser.

0.5

11

http://doi.org/10.1371/journal.pone.0053786
https://omabrowser.org/export

CladeDefinition Path to tab-separated file that provides a mapping from the
species names to the clade/group to which annotations should
at most be propagated. If set to default, the algorithm infers
a species tree an propages GO annotations to user genomes
only within some predefined clades. These predefined clades
are ’Amphibia’, ’Archaea’, ’Arthropoda’, ’Bacteria’, ’Clupeo-
cephala’, ’Dictyostelium’, ’Fungi’, ’Mammalia’, ’Nematoda’,
’Sauria’ and ’Viridiplantae’. If the parameter is set to false

or none, no limitations on the clades are used to propagate
the function annotations.

default

Table 3: General parameters in OMA

Parameter Meaning Default
WriteOutput PairwiseOrthologs Switches to disable the generation of pairwise ortholog output

files if set to false.
true

WriteOutput OrthologousPairs orthoxml Switches to disable the generation of the pairwise ortholog
output file in OrthoXML format if set to false.

true

WriteOutput OrthologousGroupsFasta Switches to disable the generation of orthologous group output
files (Fasta format, one file per group) if set to false.

true

WriteOutput HOGFasta Switches to disable the generation of hierarchical orthologous
group files (Fasta format, one file per group) if set to false.

true

WriteOutput PhyleticProfileOG Switch to disable the generation of the phyletic profiles based
on the orthologous groups if set to false.

true

WriteOutput PhyleticProfileHOG Switch to disable the generation of the phyletic profiles based
on the root level HOGs if set to false.

true

Table 4: Output file parameters

9 ESPRIT

ESPRIT can be used to identify split genes in low quality genomes. In essense, it tries to find gene fragments in
genomes named {YourGenome}.contig.fa that when combined, exists as a full length gene in other genomes. See
http://dx.doi.org/10.1093/bib/bbr038 for details on the methodology.

9.1 Esprit Parameters

ESPRIT also needs to operate on computed all-vs-all alignments. It therefore shares all the parameters from OMA
that are relevant to the all-vs-all phase, which are InputDataType, AlignBatchSize, MinScore, MinSeqLen, and
LengthTol.
The more specific parameters that only affect the ESPRIT algorithm are explained in Table 5. Note that changing
the ESPRIT parameters will not have an effect unless you set the boolean variable UseEsprit to true.

9.2 ESPRIT Output

ESPRIT stores its output files in a directory calledEspritOutput in your working directory. The output consists of
three text files and one tarball. In the tarball, FASTA files with the MSAs of the hits ESPRIT found are stored. The
other three files are explained in detail in Table 2.

10 Getting help

The preferred way to get help about OMA is via the Biostars community resource. Please consider asking your
question there, including the tags ”OMA” and ”orthologs”.
If your question requires privacy, we are also reachable by email at contact@omabrowser.org.

12

http://dx.doi.org/10.1093/bib/bbr038
https://www.biostars.org/t/oma/

Parameter Meaning Default
UseEsprit You can either set this to true, which will enable ESPRIT and

shut down the parts of OMA that are not directly needed for
ESPRIT, or set it to false to make no use of ESPRIT at all.

false

DistConfLevel Confidence level variable for contigs. This is the parameter
tol described in the paper.

2

MinProbContig Minimal proportion of genomes with which contigs form
many:1 BestMatches to consider that we might be dealing
with fragments of the same gene. This is the parameter
MinRefGenomes described in the paper, normalized by the
total number of reference genomes.

0.4

MaxContigOverlap Maximum overlap between fragments of same gene from dif-
ferent contigs.

5

MinSeqLenContig Any sequence which is less than MinSeqLenContig amino
acids long in contigs is not considered.

20

MinBestScore Minimum best score for BestMatch in scaffold recognition. 250

Table 5: ESPRIT parameters

Filename Contents
params.txt This file is kept as a reference and contains all parameters used in the current run.
hits.txt All hits found by ESPRIT are listed in this file. It is a list of contigs, ordered

according to their position relative to the putative ortholog. Each line describes
one contig, the fields are separated by tabs. In the first field, the fragment pair ID
is printed; the next two fields contain the labels of the first and second fragments
found in this hit. The forth and fifth fields contain the label of the corresponding
full gene and its genome name. Then follows the distance difference between the
two fragments and the number of positions between them (i.e. the gap); at last,
an array is listed containing the IDs of all s3 genes corresponding to this hit.

dubious.txt ESPRIT often detects more candidate pairs than it will list in the hits.txt file,
but not all of them survive the quality check. Still, if you want to see which triplets
have been filtered out, have a look at dubious.txt where they are still listed. The
file format is the same as for hits.txt.

Table 2: Contents of the ESPRIT output files

11 License

OMA standalone is licensed under the Mozilla Public License Version 2.0. For more info, please consult the following
page:
http://www.mozilla.org/MPL/2.0/
In a nutshell, OMA standalone is open source and free for commercial and non-commercial use.
Software distributed under the License is distributed on an ”AS IS” basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. See the License for the specific language governing rights and limitations under the License.

13

http://www.mozilla.org/MPL/2.0/

	Introduction
	Downloads
	Installation
	Homebrew/Linuxbrew

	Usage
	Command-line options
	Required Resources
	Parallelization
	Parallelization with LSF, PBS Pro, Slurm, or SunGridEngine
	LSF
	Sun Grid Engine (aka Oracle Grid Engine)
	PBS Pro
	Slurm

	Adding/Updating new genomes
	Exporting precomputed all-against-all
	Advanced usages of OMA standalone
	Specifying the maximum amount of computing time

	Utility tools
	oma-cleanup
	oma-status
	oma-compact

	Applications for OMA standalone
	Species tree reconstruction
	Predict gene functions of a new genome
	Dynamics of Genome Evolution
	Phylogenetic Profiling

	File Formats
	Input Files
	OMA Output Files

	Parameters
	ESPRIT
	Esprit Parameters
	ESPRIT Output

	Getting help
	License

