OMA standalone

CBRG, ETHZ
Contents
1 Introduction 1
2 Downloads 1
3 Installation 2
3.1 Homebrew/Linuxbrew 2
4 Usage 2
4.1 Command-line options e 3
4.2 Parallelization e 3
4.2.1 Parallelization with LSF, PBS Pro, Slurm, or SunGridEngine 4
422 LSF e 4
4.2.3 Sun Grid Engine (aka Oracle Grid Engine) 4
424 PBSPro 4
425 Slurm ..o 4
4.3 Required Resources 5
4.4 Adding/Updating new genomes L 5
4.5 Advanced usages of OMA standalone 5
45.1 Specifying the maximum amount of computing time 5
5 File Formats 5
5.1 Input Files e 5
5.2 Output Files e 6
52.1 OMA Output 6
522 ESPRIT Output e 7
6 Parameters 7
7 Getting help 9
8 License 10
1 Introduction

You can run OMA as a standalone program. Included are the algorithms for OMA itself plus its addition ESPRIT.
The software can be installed on Linux (x86, both 64bit and 32bit) and MacOSX (x86, both 32bit and 64bit).

For a short summary and pointers to detailed algorithmic publications of OMA, please refer to the OMA browser
page:

http://omabrowser.org/oma/about/

For background info on ESPRIT, please refer to this article:

http://dx.doi.org/10.1093/bib/bbr038

If you have specific questions about the installation or the usage of OMA, please contact adrian.altenhoff at inf.ethz.ch
or christophe.dessimoz at unil.ch.

2 Downloads

The current version of OMA standalone can be found here:

http://omabrowser.org/oma/about/
http://dx.doi.org/10.1093/bib/bbr038

OMA.2.2.0.tgz
See the release notes to get an overview of recent function improvements and bug fixes.
Previous releases of OMA standalone are still available for download.

3 Installation

You do not need to install OMA standalone on your system; the script will also run if you just call it by using the
complete path to bin/oma in the installer folder. But we still encourage you to run the installer script, since it makes
working with OMA considerably more convenient.

To install OMA standalone on your system, download the installer, untar the package and run the included installer
script:

curl http://omabrowser.org/standalone/OMA.2.2.0.tgz -o oma.tgz
tar xvzf oma.tgz

cd OMA.2.2.0

./install.sh /your/install/prefix

If you do not choose an install prefix, OMA will be installed in /usr/local/0MA (for this, you might need to install
it using the root account or sudo).

After installation, make sure the bin folder of OMA is in your PATH variable, e.g., if you are using bash and used
/your/install/prefix as installer prefix, add a line in /.profile such as:

export PATH=\$PATH:/your/install/prefix/0OMA/bin

For other shells, choose the appropriate syntax.

3.1 Homebrew/Linuxbrew

Alternatively, OMA standalone is also available on Homebrew and Linuxbrew. To install OMA standalone with
Homebrew or Linuxbrew make sure you have installed the respective package and then run

brew tap brewsci/bio
brew install oma

4 Usage

First, set up a working directory. Copy the file parameters.drw into this folder (if you installed OmaStandalone,
you can alternatively run OMA -p to get the parameter file with default values) and change it to your needs. Create
a directory DB in your working directory that holds the genome data in FASTA format (see " File formats”) and copy
your data into this directory. If you want to use ESPRIT, the FASTA file containing the contigs should be called
{YourGenome}.contig.fa. Then, simply call OMA from your working directory to run OMA and/or ESPRIT

If you have not installed OMA yet, use the complete path to bin/oma in the installer folder to start the script.

As an example, assume you installed OMA in /your/install/prefix and want to use ESPRIT on two genome files
and one file with contigs (all in /home/you/fasta, do something like this:

create working directory

mkdir myWorkingDir

cd myWorkingDir

create DB directory in working directory
mkdir DB

copy FASTA files into DB directory

cp /home/you/fasta/yourFirstGenomeFile.fa DB/
cp /home/you/fasta/yourSecondGenomeFile.fa DB/
cp /home/you/fasta/yourContigFile.contig.fa DB/
cp /your/install/prefix/0MA/OMA.2.2.0/parameters.drw ./
adjust parameters

vim parameters.drw

run OMA

OMA

To get a first impression of OMA you could cd into the ToyExample directory, have a look at parameters.drw and
run OMA to process our example files.

http://omabrowser.org/standalone/OMA.2.2.0.tgz
release_notes.txt
previous_releases.html

4.1 Command-line options

OMA standalone has a few commandline options you can set. The available options together with a brief description
is available using the "-h" option, i.e. OMA -h

OMA -h
bin/oma - runs OMA standalone

bin/oma [options] [paramfile]

Runs the standalone version of the Orthologous MAtrix (OMA) pipeline
to infer orthologs among complete genomes. A highlevel description
of its algorithm is available here: http://omabrowser.org/oma/about

The all-against-all Smith-Waterman alignment step of OMA requires
a lot of CPU time. OMA standalone can therefore be run in parallel.
If you intend to use OMA standalone on a HPC cluster with a scheduler
such as LSF, PBS Pro, Slurm or SunGridEngine, you should use the
jobarray option of those systems,
e.g. bsub -J "oma[1-500]" bin/oma (on LSF).

gsub -t 1-500 bin/oma (on SunGridEngine)
In case you run OMA on a single computer with several cores, use
the -n option.

Options:
-n <number> number of parallel jobs to be started on this computer
-v version
-d <level> increase debug info to <level>. By default level is set to 1.
-i interactive session, do not quit in case of error and at the end
of the run.
-s stop after the Al11All phase. This is the part which is parallelized.
The option can be useful on big datasets that require lot of
memory for the later phases of OMA. It allows to stop after the
parallelized step and restart again a single process with more
memory.
-C stop after database conversion. This option is useful if you
work with a large dataset and/or the filesystem you use is
slow.
-W <secs> maximum amount of Wall-clock time (in secs) that the job should
run before terminating in a clean way. This option has only an
effect in the all-against-all phase. If the job terminates
because it reaches the time limit, it quits with the exit
code 3.
-p copy the default parameter file to the current directory. This
is useful if want to analyse a new dataset and previously
installed OmaStandalone.
-h/? this help
paramfile path to the parameter file. it defaults to ./parameters.drw
EXIT

0 normal exit

1 a general error (i.e. configuration problem) occured

3 reached timelimit (provided with -W flag)

4.2 Parallelization

The all-against-all phase of OMA is the most time-consuming one, but it can be parallelized (unlike all other steps,
which cannot run in parallel). The way it works is that the parameter " AlignBatchSize" and the total number of
genomes (n) will determine into how many chunks the all-against-all phase is divided. AlignBatchSize will split the

n*(n-1)/2 genome pairs further into chunks of at most " AlignBatchSize" alignments. The larger AlignBatchSize is,
the more and smaller jobs will be executed.

Scheduling is straightforward: all compute processes need to start from the same directory, and each one will try to
do an equal amount of chunks sequentially. However, before starting a new chunk, each process ensures that it has
not yet already been processed by another process (i.e. no result file yet exists).

On a single computer with multiple processors and/or cores, it is recomended to start "N" parallel processes with
the "-n" option, i.e.

OMA -n 5

will start 5 parallel jobs. Note that on HPC with schedulers there is a better way described below4.2.1
Therefore, there is not need to specify which parts are to be done by which process. One should only ensure that all
processes start from a shared directory, such that each chunk gets computed by a single process only.

4.2.1 Parallelization with LSF, PBS Pro, Slurm, or SunGridEngine

With a scheduler such as LSF or SGE, running parallel jobs is particularly easy, as the parallel jobs can be start
using as a job array. OMA will automatically spread the work for the all-against-all among all processes. For a brief
discussion on the required resources refer to the section below4.3 Do not start OMA with the -n option for that.
Instead, use a job array with one of the supported schedulers below (the example is to start 100 jobs in parallel).
New in 2.0: The user should now explicitly set the number of total processes that should run in the job array. This
is done by setting the environment variable *NR_PROCESSES’ . E.g. in bash/tcsh use

export NR_PROCESSES=100 # bash
setenv NR_PROCESSES 100 # tcsh

prior to submitting the job. The main advantage of this new form is that single jobs can be more easily resubmitted,
and very large job arrays that do not all run simultaneously will work more reliably.

4.2.2 LSF

export NR_PROCESSES=100
bsub -J "OMA[1-$NR_PROCESSES]" -o "out.%I" "OMA"

4.2.3 Sun Grid Engine (aka Oracle Grid Engine)

export NR_PROCESSES=100
gsub -t 1-$NR_PROCESSES "OMA"

4.2.4 PBS Pro

Prepare a job script called e.g. job.sh:

#!/bin/bash

set the number of nodes and processes per node
#PBS -1 select=1:ncpus=1:mem=1000mb

set max wallclock time

#PBS -1 walltime=01:00:00

#PBS -J 1-100

export NR_PROCESSES=100

OMA

The script can then be submitted as follows:

gqsub job.sh
4.2.5 Slurm

sbatch --array=1-100 -N1 <<EQOF
#!/bin/sh

export NR_PROCESSES=100
/absolute/path/to/bin/0MA

EOF

4.3 Required Resources

Depending on the dataset to be analysed, OMA can require quite a significant amount of computational resources,
i.e. RAM and cpu time. Most computing time is spent to compute the all-against-all sequence alignments, which
is why this part has been parallelized. Although cpu intensive this phase does not require too much memory. As a
rule of thumb you can assume it requires roughly 10 times the size of your DB folder, but at minimum 650MB. The
second part of OMA runs sequential on a single core, but it requires a lot more memory: Asymptotically it grows
quadratic in the number of genomes. From a few real data runs we estimated that as a rule of thumb, you should
count with 400MB * pow(nr_genomes, 1.4). Obviously this depends also a lot on the size of your genomes. 60
metazoas have been successfully computed using 120GB, and for the same number of bacterial genomes, 50GB were
reported to be enough.

Because of this imbalance regarding the required memory the OMA starter script has command line option -s to run
only the first part of the OMA pipeline. Using this option, the computation can be split into a parallel phase with
little memory requirement , and a single process requiring a lot more RAM. Running the OMA thus becomes a two
stage process like this:

first stage, little memory:
OMA -s

once first stage terminated, run second stage
OMA

Note that this staging is mostly useful on computing clusters where often memory and cpu time has to be reserved
at job submission.

4.4 Adding/Updating new genomes

It is possible to add new genomes without recomputing the all-against-all phase for pre-existing genomes. To do
so, simply add the new fasta databases in the DB/ directory and re-run OMA. Likewise, it is possible to update a
genome by deleting the old genome from the DB/ directory, and adding a new file. Important: to avoid clashes
with previously computed results, the updated genome must use a different filename than any previously computed
result.

4.5 Advanced usages of OMA standalone

In this section we collect a few ideas to push the limits of OMA standalone.

4.5.1 Specifying the maximum amount of computing time

Often it is desirable to have many short jobs than a few long running ones, especially in a HPC environment. There,
usually each job is limited to a certain amount of time, where short jobs usually get a higher priority assigned. With
the =W command line option, one can inform OMA of the maximum amount of time (in seconds) it should use before
exiting in a clean way. Once this time limit is reached, OMA terminates with an exit value of 3, which can be used
on many schedulers to re-queue the job automatically. On LSF, you can use for example -Q "3". Sensible values for
-W are usually between 3600 (1 hour) or higher. Note that this flag does not replace any resource allocation option
from the scheduler.

5 File Formats

5.1 Input Files

OMA uses two different input formats: FASTA files for genome input and a Darwin file for parameter input.

The Fasta format is explained in detail on wikipedia.

As almost everywhere else, OMA uses the greater-than symbol ">" to distinguish labels from sequences. Each
sequence in a genome is supposed to have its own label. Have a look at the FASTA files included in ToyExample/DB
in our installer package for some example files.

In case your genomes contain multiple alternative splicing variants, you can add a text-based file per genome
calledDB/{YourGenome}.splicethat put together the different splicing variants, e.g. to indicate that the three
splicing variants ENSP00000384207, ENSP00000263741 and ENSP00000353094 are encoded by the same gene, add
the following line to the splice file:

http://en.wikipedia.org/wiki/FASTA_format

ENSP00000384207; ENSP00000263741; ENSP00000353094

OMA requires that the individual IDs are unique prefixes of your FASTA headers.

If you want to use ESPRIT, make sure that FASTA files containing contigs are called {YourGenome}.contig.fa. So
if you want to experiment with some mouse genome, call the FASTA file mouse.contig.fa or mymouse.contig.fa
or something similar.

Parameter files use Darwin syntax. Key-value-pairs are written as

key := value;

Note the colon in := and the semicolon at the end of the line. If your parameter file does not use valid Darwin
syntax, OMA will print out a short message and stop its execution.

5.2 Qutput Files
5.2.1 OMA Output

The output of OMA gets written to files stored in a directory Output in your working directory. This can be changed
by changing the OutputFolder parameter, There are text files and directories organized as described in Table 1. If
not all output files are needed, note that the production of some of them can be disabled (see Table 4 below).

Filename or Directory

Contents

Map-SegNum-ID.txt

OrthologousGroups.txt

OrthologousMatrix.txt

OrthologousGroups.orthoxml
OrthologousGroupsFasta/

PairwiseOrthologs/

OrthologousPairs.orthoxml
HierarchicalGroups.orthoxml
EstimatedSpeciesTree.nwk

HOGFasta/

used_splicing _variants.txt

gene_function.gaf

Lists all genes of all datasets with their unique sequence number and
the labels read from the FASTA files.

The groups of orthologs are given as one per row, starting with a
unique group identifier, followed by all group members, all separated
by tabs.

More compact version of OrthologousGroups.txt. The groups of
orthologs are given as matrix with group per row and one genome
per tab-separated column. Numbers refer to entry number as listed
in the file Map-SeqNum-ID.txt.

The OMA groups of orthologs stored in orthoxml format.

Each OMA group is provided as a separate Fasta file, with the species
name as identifer. This format is particularly suitable as starting point
for a phylogenetic reconstruction.

The textfiles in Output/PairwiseOrthologs are named according
to {genome a}-{genome b}.txt and consist of a list of pairwise
orthologs for the two given genomes. Every pair is listed only once,
and in no particular order. Each line in the file contains one pair; all
fields are separated by tabs. In the first two field, the unique IDs of
the proteins are given. The next two fields contain the labels of the
proteins, and in the last two fields, the type of orthology and (if any)
the OMA group is given.

The pairwise orthologs stored in orthoxml format. Each group in the
file will have orthologs between genes from only two genomes.

The hierarchical groups of orthologs in OrthoXML format. A detailed
description of how these groups are computed is forthcoming.

The inferred species tree on which the hierarchical groups inference
procedure is based, in Newick format.

For each top-level HOG group we provide a separate Fasta file with all
protein sequences clustered to it. This format is particularly suitable
as starting point for a phylogenetic reconstruction of a gene tree.

If UseOnlyOneSplicingVariantis activated and splicing informa-
tion is available, the variant which has been used for calling the or-
thologous relations is stored in this file. The format is a tab-delimited
text file with the species in the first column and the id of the used
splicing variant in the second column.

The predicted Gene Ontology function assignments as a gaf formatted
file. The file is only created if DoGroupFunctionPrediction is set
to true in the parameter file and at least some exported genomes
with GO annotations are included in the analysis.

Table 1: Contents of the OMA output files

http://orthoxml.org
http://orthoxml.org

5.2.2 ESPRIT Output

ESPRIT stores its output files in a directory calledEspritOutput in your working directory. The output consists of
three text files and one tarball. In the tarball, FASTA files with the MSAs of the hits ESPRIT found are stored. The
other three files are explained in detail in Table 2.

Filename

Contents

params.txt
hits.txt

dubious.txt

This file is kept as a reference and contains all parameters used in the current run.
All hits found by ESPRIT are listed in this file. It is a list of contigs, ordered
according to their position relative to the putative ortholog. Each line describes
one contig, the fields are separated by tabs. In the first field, the fragment pair ID
is printed; the next two fields contain the labels of the first and second fragments
found in this hit. The forth and fifth fields contain the label of the corresponding
full gene and its genome name. Then follows the distance difference between the
two fragments and the number of positions between them (i.e. the gap); at last,
an array is listed containing the IDs of all s3 genes corresponding to this hit.
ESPRIT often detects more candidate pairs than it will list in the hits.txt file,
but not all of them survive the quality check. Still, if you want to see which triplets
have been filtered out, have a look at dubious.txt where they are still listed. The
file format is the same as for hits.txt.

Table 2: Contents of the ESPRIT output files

6 Parameters

All parameters for OMA and/or ESPRIT are set in a parameters file. There is an example file in the OMA installer

package; we encourage you to copy this file into your working directory and change it to your needs.

The parameter file consists of three main parts: First, general parameters for OMA are set. Table 3 describes these
parameters in detail.
Next, there are a few optional parameters, listed in Table 4, to avoid producing particular output files. Indeed, in
large analyses, disabling the generation of unused output might save a substantial amount of computing time and
might drastically reduce the number of produced files.
And third, more specific parameters that only affect the ESPRIT algorithm can be changed. These parameters are
explained in Table 5. Note that changing the ESPRIT parameters will not have an effect unless you set the boolean
variable UseEsprit to true.

Parameter

Meaning

Default

InputDataType

OutputFolder

Type of input sequences. This can be set either to 'AA’ for
amino acid sequences or 'DNA’ for nucleotide sequences
Folder to which the output is written. At each run, the content
of this folder will be overwritten. Don’t store any important
files in it. The OutputFoldermust not contain any spaces.

ReuseCachedResults If you want to recompute everything from scratch everytime

the script is run, set this to false.

AlignBatchSize In the all-against-all phase, each genome pair is split in smaller

MinScore

LengthTol

StablePairTol

chunks of AlignBatchSizeprotein comparisons. The larger
this number, the longer each unit runs, and the fewer files get
produced. This allows to adjust the frequency of milestone
steps (e.g. in case of computer crash) or to process few but
large genomes with many CPUs efficiently.

Alignments which have a score lower than MinScore will not
be considered. The scores are in Gonnet PAM matrices units.
Length tolerance ratio. If the length of the effective alignment
is less than LengthTol * min(length(sl), length(s2)), then
the alignment is not considered.

During the stable pair formation, if a pair has a distance prov-
able higher than another pair (i.e. StablePairTol standard
deviations away) then it is discarded.

AA

Output

true

1000000

181

0.61

1.81

VerifiedPairTol

MinSeqLen

UseOnlyOneSplicingVariant

StableIdsForGroups

GuessIdType

DoHierarchicalGroups

MaxTimePerLevel

SpeciesTree

ReachabilityCutoff

MinEdgeCompletenessFraction

DoGroupFunctionPrediction

Tolerance parameter for the detection of differential gene
losses using a third genome. The larger the tolerance, the lib-
eraler the algorithm assigns orthologous relations. A detailed
description is provided here.

Any sequence which is less than MinSeqLen amino acids long
in regular genomes is not considered.

Enables/disables the filtering on a single represetative splicing
variant. If enabled, OMA selects the variant that has the most
homologous matches with all other genomes. Orthology infer-
ence is then only based on this variant. If disabled, alternative
splicing variants will usually be infered as paralogs.
Enables/disables the generation of stable identifiers for OMA
groups (and Hierarchical Groups if the top-down algorithm is
selected). The identifier consists of a prefix to determine the
type of the group ('OMA’ or 'HOG'), and a subsequence of
the amino acid sequence uniquely present in this group. The
computation of these ids might require a substantial amount
of time. The ids are stored in the OrthoXML files only.
Enable/disable guessing of the id types while generating the
orthoxml file. In this context we refer to ID type guessing
as the task to gussing whether an ID should be stored in the
geneld, protld or transcriptld tag. If the flag is set to false,
the whole fasta header is used and stored as is in the protld
tag.

Enables/disables and selects the algorithm to compute the hi-
erarchical orthologous groups (HOGs). Valid parameters are
false, ’top-down’ and ’bottom-up’. The top-down ap-
proach was the only algorithm until OMA standalone 2.0. The
bottom-up approach is as of now still an experimental feature,
but will become the default choice in the future.

Define maximum amount of time (in sec) spent by the pro-
gram for breaking every connected component of the orthology
graph at its weakest link on a given taxonomic level. If set to
a negative value, no timelimit is enforced.

The hierarchical groups require a (partially) resolved species
phylogeny. With the parameter SpeciesTree the user can
specify a phylogeny in Newick-format, or, by setting the vari-
able to "estimate”, compute a species tree based on the OMA
Groups and use this one.

The cutoff of "average reachability within two steps” defines
up to what point a cluster is split into sub-clusters. This
paramter applies only to the top-down HOG inference ap-
proach. See parameter DoHierarchicalGroups for addi-
tional information.

The cutoff in GETHOGs bottom-up algorithm to make an edge
trusted in the orthology graph among HOGs. This parame-
ter applies only to the bottom-up approach. See parameter
DoHierarchicalGroups for additional information
Compute Gene Ontology function predictions based on the
OMA Groups assignments. The predictions are then stored in
a gaf file. Computing these predictions can take a substantial
amount of time. Note: Predictions are based on transfering
existing annotations from genomes. Only genomes exported
through the OMA Browser export interface have usable input
annotations.

1.53

50

true

false

false

’top-down’

1200

estimate

0.65

0.80

true

http://nar.oxfordjournals.org/content/34/11/3309.full
https://omabrowser.org/export

GroupFunctionCutoff Parameter to specify the fraction of genes in a group that need 0.5
to be annotated with a GO term in order to propagate the an-
notation to the unannotated group members. The parameter
ensures that predictions are not propagated too liberally. Note
that it requires at least the specified fraction of genomes to
be exported from the OMA Browser.
CladeDefinition Path to tab-seperated file that provides a mapping from the default
species names to the clade/group to which annotations should
at most be propagated. If set to default, the algorithm infers
a species tree an propages GO annotations to user genomes
only within some predefined clades. These predifined clades
are 'Amphibia’, 'Archaea’, 'Arthropoda’, 'Bacteria’, 'Clupeo-
cephala’, 'Dictyostelium’, 'Fungi’, 'Mammalia’, 'Nematoda’,
'Sauria’ and 'Viridiplantae'. If the parameter is set to false
or none, no limitations on the clades are used to propagate
the function annotations.
Table 3: General parameters in OMA
Parameter Meaning Default
WriteQutput_PairwiseOrthologs Switches to disable the generation of pairwise ortholog output true
files if set to false.
WriteOutput_OrthologousPairs_orthoxml Switches to disable the generation of the pairwise ortholog true
output file in OrthoXML format if set to false.
WriteOutput_OrthologousGroupsFasta Switches to disable the generation of orthologous group output true
files (Fasta format, one file per group) if set to false.
WriteOutput _HOGFasta Switches to disable the generation of hierarchical orthologous true
group files (Fasta format, one file per group) if set to false.
Table 4: Output file parameters
Parameter Meaning Default
UseEsprit You can either set this to true, which will enable ESPRIT and false
shut down the parts of OMA that are not directly needed for
ESPRIT, or set it to false to make no use of ESPRIT at all.
DistConfLevel Confidence level variable for contigs. This is the parameter 2
tol described in the paper.
MinProbContig Minimal proportion of genomes with which contigs form 0.4
many:1 BestMatches to consider that we might be dealing
with fragments of the same gene. This is the parameter
MinRefGenomes described in the paper, normalized by the
total number of reference genomes.
MaxContigOverlap Maximum overlap between fragments of same gene from dif- 5
ferent contigs.
MinSeqLenContig Any sequence which is less than MinSeqlLenContig amino 20
acids long in contigs is not considered.
MinBestScore Minimum best score for BestMatch in scaffold recognition. 250

7 Getting help

Table 5: ESPRIT parameters

The preferred way to get help about OMA is via the Biostars community resource.
question there, including the tags "OMA" and "orthologs”.
If your question requires privacy, we are also reachable by email at contact@omabrowser.org.

Please consider asking your

https://www.biostars.org/t/oma/

8 License

OMA standalone is licensed under the Mozilla Public License Version 2.0. For more info, please consult the following

page:
http://www.mozilla.org/MPL/2.0/

In a nutshell, OMA standalone is open source and free for commercial and non-commercial use.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND,

either express or implied. See the License for the specific language governing rights and limitations under the License.

10

http://www.mozilla.org/MPL/2.0/

	Introduction
	Downloads
	Installation
	Homebrew/Linuxbrew

	Usage
	Command-line options
	Parallelization
	Parallelization with LSF, PBS Pro, Slurm, or SunGridEngine
	LSF
	Sun Grid Engine (aka Oracle Grid Engine)
	PBS Pro
	Slurm

	Required Resources
	Adding/Updating new genomes
	Advanced usages of OMA standalone
	Specifying the maximum amount of computing time

	File Formats
	Input Files
	Output Files
	OMA Output
	ESPRIT Output

	Parameters
	Getting help
	License

